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Abstract

Multiresolution methods are a common technique used for dealing
with large-scale data and representing it at multiple levels of detail.
We present a multiresolution hierarchy construction based on /2 sub-
division, which has all the advantages of a regular data organization
scheme while reducing the drawback of coarse granularity. The {/2-
subdivision scheme only doubles the number of vertices in each sub-
division step regardless of dimension n. We describe the construction
of 2D, 3D, and 4D hierarchies representing surfaces, volume data, and
time-varying volume data, respectively. The 4D approach supports
spatial and temporal scalability. For high-quality data approximation
on each level of detail, we use downsampling filters based on n-variate
B-spline wavelets. We present a B-spline wavelet lifting scheme for
{/2-subdivision steps to obtain small or narrow filters. Narrow filters
support adaptive refinement and out-of-core data exploration tech-
niques.
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1 Introduction

Multiresolution methods can be classified into regular and irregular ones
according to data formats and refinement rules. Regular refinement schemes’
main advantages over irregular refinement schemes are that grid connectivity
and vertex locations are implicitly defined and data can be easily accessed,
which is of particular importance for visualization of large data. The main
disadvantage of regular refinement schemes is their coarse granularity and
thus low adaptivity. For example, in one quadtree or octree refinement step
the number of vertices is multiplied by a factor of four or eight, respectively.
We use the {/2-subdivision scheme that only doubles the number of vertices
in each subdivision step regardless of dimension, which is a factor of /2 in
each of the n dimensions. This fact implies that the {/2-subdivision scheme,
in general, will require less vertices to satisfy error bounds. In Section 2, we
describe the </2-subdivision scheme in general and provide more detail for
up to four dimensions.

For time-varying volume representation, multiresolution representations
with scalability in time and space need to be considered. The approach by
Shen et al. [9] combines an octree with a binary tree to a Time-Space Par-
tition (TSP) tree, where the octree is used for the spatial and the binary
tree for the temporal hierarchy. By using a +/2-subdivision hierarchy for
representing time-varying volume data, we treat time as a real fourth dimen-
sion, dealing with spatial and temporal dimensions equally. Compared to the
TSP approach, we have finer granularity, which is especially desirable in the
spatial dimension.

Another drawback of using regular data structures is that downsampling
is done based purely on grid structure, without considering data values.
Therefore, aliasing artifacts occur and scientifically interesting details in a
data set can get lost and be overlooked. To avoid this effect and produce
better approximation quality on coarser levels, we use a downsampling filter
based on n-variate B-spline wavelets.

Non-constant B-spline wavelets have the property that the computation
of the wavelet coefficient at a vertex p is not only based on the neighbors
of p but also on vertices that are farther away. Such large filters reduce
the adaptivity of the multiresolution representation. Moreover, when using
out-of-core techniques to operate on or visualize large-scale data, substantial
amounts of data must be loaded from external memory with typically low
I/O-performance for applying such large filters. Lifting schemes with narrow



filters can be used to overcome this problem. In Section 3, we describe a one-
dimensional lifting scheme for B-spline wavelets applicable to multiresolution
polygonal representations of curves. In Sections 4, 6, and 8, we describe how
this approach can be generalized to the 2D, 3D, and 4D settings of multires-
olution representations generated by /2 subdivision (with n = 2,3,4). In
Sections 5, 7, and 9, we apply these techniques to surfaces, volume data,
and time-varying volume data, respectively. We provide several examples
and visualize data using standard visualization methods such as isosurface
extraction, cutting planes, and volume rendering.

2 Multiresolution with /2 subdivision

A multiresolution hierarchy based on /2 subdivision is constructed by start-
ing with the coarsest resolution of a given mesh and iteratively applying
{/2-subdivision steps. The subdivision steps are performed simultaneously
for all mesh elements.

The splitting step of the {/2-subdivision scheme were described by Co-
hen and Daubechies [2] for n = 2 and Maubach [6] for arbitrary n. Figure
1 illustrates four splitting steps of a /2 subdivision (n = 2). To split the
quadrilateral (), we compute its centroid ¢ and connect c to the four vertices
of Q. The “old” edges of the mesh are removed (except for the edges de-
termining the mesh/domain boundary). Velho and Zorin [12] completed the
v/2-subdivision scheme by adding an averaging step to the splitting step.

B

Figure 1: 1/2 subdivision.

This subdivision scheme can be generalized to arbitrary dimension. The
splitting step of the /2 subdivision is executed by inserting the centroid of
the n-dimensional geometrical shapes and adjusting vertex connectivity. The
averaging step applies to every old vertex v the update rule v =av + (1 —
a)w , where w is the centroid of the adjacent new vertices and o € [0, 1].
See [8] for further details.

Figure 2 shows three v/2-subdivision splitting steps (o = 1) for structured



rectilinear volume data. Three kinds of polyhedral shapes (octahedron, oc-
tahedron with split faces, and cuboid) arise.

Figure 2: v/2 subdivision (upper row) and created polyhedral shapes (lower
row).

With respect to the start configuration (first picture of Figure 2), the
three subdivision steps are shown in Figure 2: The first step inserts the
centroid of the cuboid, the second step inserts the centers of the faces of the
original cuboid, and the third step inserts the midpoints of the edges of the
original cuboid.

In order to generate a four-dimensional hierarchy, we start with a hyper-
cube (or hypercuboid). In Figure 3, four v/2-subdivision steps (o« = 1) are
shown.!

Figure 3(a) shows the initial hypercuboid, which consists of two cuboids
at two time steps, t; and t3. The first subdivision step inserts the centroid
of the hypercuboid (Figure 3(b)), which can be interpreted as the centroid
of a cuboid at time step t, = % The second subdivision step inserts
the centroids of the eight cuboids within the original hypercuboid (Figure
3(c)), the third step inserts the centers of their faces (Figure 3(d)), and the
fourth step inserts the midpoints of their edges (Figure 3(e)). The geometric
structure shown in Figure 3(e) consists of 16 hypercuboids.

3 Lifting of B-spline wavelets

When downsampling time-varying volume data in a regular fashion, data is
not grouped due to changes in time or space. Thus, aliasing artifacts occur

! Although the hypercube is symmetric in all four dimensions, we use illustrations where
the hypercube is stretched in the temporal dimension. We only show the spatial connec-
tivities within the time steps and omit the connectivity information between time steps.
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Figure 3: v/2 subdivision.

and important details may be missing on coarse levels of resolution. We
overcome this problem by using downsampling filters. In image processing,
such downsampling filters are commonly employed with wavelets. Stollnitz
et al. [10] described how to generate wavelets for subdivision schemes.

A family of filters can be derived by using B-splines of various degrees
for wavelet generation. However, when using non-constant B-splines, the
size of the wavelet filters is not limited to adjacent vertices. Localization is
desirable when we want to apply the wavelet filter to adaptive refinement
and out-of-core visualization techniques. Lifting schemes as introduced by
Sweldens [11] decompose wavelet computations into several steps, but they
assert narrow filters.

The idea of a lifting scheme is shown in Figure 4, using the example
of linear B-spline wavelets. For downsampling, the vertices of a level of
resolution L, are split into two groups: the ones that belong to the next
coarser level of resolution £,_; (even vertices) and the ones that belong to
Ly \ L1 (odd vertices). Instead of applying a large downsampling filter to
the vertices € L,_1, the lifting scheme decomposes the large filter into two
narrow ones and executes two steps. First, one narrow filter (w-lift) is applied
to the vertices € L,, \ £,,—1. Second, the other narrow filter (s-lift) is applied
to the vertices € L£,, 1. This process is usually referred to as encoding, and
the values at the vertices € £, \ £, 1 are called wavelet coefficients. The
decoding step inverts the two encoding steps and reconstructs level £,, from
level £,,_1 using the wavelet coefficients.
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Figure 4: One-dimensional linear B-spline wavelet lifting scheme.

The lifting filters can be described by masks. For example, the one-
dimensional B-spline wavelet lifting filters are given by:

s-lift(a,b): (a b a), (1)
w-lift(a, b): (a b a). (2)

Using the s-lift and w-lift masks, a linear B-spline wavelet encoding step
is defined by sequentially executing the two operations w-lift(—3,1) and
s-lift(1,1). A linear B-spline wavelet decoding step is defined by executing
the inverse operations in reverse order, i.e., s-lift(—1, 1) and w-lift(3, 1).

Using the same masks, a cubic B-spline wavelet encoding step is defined by
the three lifting operations s-lift(—3, 2), w-lift(— 3, 1), and s-lift(2, 1). A cubic
B-spline wavelet decoding step is again defined by the inverse operations in
reverse order.

For a detailed derivation of the B-spline lifting scheme that we use, as
well as for its analysis (smoothness, stability, approximation order, and zero
moments), we refer to [1].

4 Lifting for v/2-subdivision hierarchies

The 1D filters described in the previous section for polygons can be general-
ized to 2D filters for meshes representing tensor-product surfaces by convo-
lution of the 1D masks in the two coordinate directions, e.g.,

a a? ab a®
(a b a)x| b |=|ab b ab | . (3)
a a? ab a®

A mesh hierarchy for tensor-product surfaces can be generated using quadtree
refinement. By using v/2 subdivision instead of a quadtree-based scheme, we
have an additional level of resolution (see second picture in Figure 1). For
this additional level, we only insert new vertices at the centers A of old faces;



at the midpoints e of old edges, vertices are not inserted before the sub-
sequent subdivision step (see third picture in Figure 1). Thus, in order to
apply the wavelet lifting scheme to a v/2-subdivision hierarchy, we have to

adjust the mask (3) to the setting shown in the second picture of Figure 1.
For encoding with linear B-spline wavelets, the w-lift operation is exe-

cuted first. In a v/2-subdivision hierarchy, we have no data values available
at the positions e (see third picture of Figure 1). Since the mask (3) requires
data at the positions e, we compute them by linearly interpolating the val-
ues at the vertices o. Linear interpolation is appropriate, since we are using
linear wavelets. This approach changes mask (3) to

(4)

a® + ab a® + ab
w-lift erucode (a, b) :

a® + ab a’® + ab

Next, the s-lift operation is executed. Again, we have to determine data
values at the positions e. However, the w-lift operation has (theoretically)
executed 1D masks to update the values at the positions e. Since we assumed
that the values at the vertices e were linear interpolations of the values at
the vertices o, the values at the vertices e vanish by executing the 1D masks.
The mask for the s-lift encoding step becomes

s-liftencode (@, b) : ( b> ) . (5)

For decoding with linear B-spline wavelets, we first execute the s-lift op-
eration. Prior to executing the s-lift encoding operation, the values at the
vertices ® have vanished, but the s-lift encoding operation (theoretically) exe-
cuted the 1D mask to update the vertices o. Hence, the values at the vertices
e are given by linear interpolation of the values at the neighbor vertices A,
multiplied by the factor 2a of the 1D mask. We rename the factor a to @ and
obtain the new mask

S—liftdecode(a,b) : ( b2 ) . (6)

Finally, the w-lift operation is executed again. The s-lift decoding operation

has (theoretically) applied a 1D mask again to update the vertices e. Since
the 1D s-lift decoding mask is the inverse of 1D s-lift encoding mask, the
values at the vertices e are the same as before the execution of these two
s-lift operations, i.e., they vanish, leading to the new mask

a2 a2
W'liftdecode(a; b) : ( ) . (7)

a? a?



5 Surfaces

In Figure 5, we provide an example for a v/2-subdivision hierarchy combined
with 2D wavelet filters. The original surface shown in Figure 5(a) results from
sampling a 2D Gaussian function at 64% vertices. The surface is encoded and
decoded again. In Figure 5(b), we show a coarse level of detail obtained by
applying v/2-subdivision wavelets filters. In Figure 5(c) and (d), we show the
same level of detail obtained when establishing the v/2-subdivision hierarchy
using downsampling filters based on bilinear and bicubic B-spline wavelets,
respectively.

oou WA

Figure 5: (a) v/2-subdivision surfaces; (b) encoded and decoded by +/2-
subdivision wavelets; and (c) by bilinear B sphne wavelets.

In Figure 5(b), obvious over- and undershoots caused by the v/2-subdivision
wavelet filters can be recognized. We also observed less pronounced over-
and undershoot when using bicubic B-spline wavelet filters. Only bilinear B-
spline wavelet filters ensure no over- and undershoots, see Figure 5(c), since
linear B-spline wavelets have interpolating scaling functions, which guaran-
tees interpolating refinement filters [4]. Over- and undershoots are disturbing
during visualization, for example, when extracting isocontours from different
levels of approximation. They can cause changes of contour topology when
changing the level of resolution. We would like to preserve topology as much
as possible when changing approximation levels.

Moreover, the lifting filters for linear B-spline wavelet were as narrow as
they can be, whereas some of the lifting filters for cubic B-spline wavelets
are larger. These drawbacks of cubic B-spline wavelets led to the decision
to focus on linear B-spline wavelets when generalizing the schemes to higher
dimensions.



6 Lifting for v/2-subdivision hierarchies

In a v/2-subdivision hierarchy, three different kinds of polygonal shapes ap-
pear. Therefore, three different kinds of masks have to be defined for the
lifting filters. For deriving these masks based on trilinear B-spline wavelets,
we start with the situation shown in the second picture of Figure 2 (volume
case), proceed with the situation shown in the third picture of Figure 2 (face
case), and finally treat the situation shown in the fourth picture of Figure 2
(edge case), which is topologically equivalent to the situation shown in the
first picture of Figure 2.

Volume case. A convolution of 1D masks in the three coordinate directions
leads to a generalization of mask (3) to a 3D mask, which can be used for
mesh hierarchies based on octree refinement. In the situation shown in the
second picture of Figure 2, we have no data values available at the vertices
e and /A (see fourth picture of Figure 2).

Again, we assume that the value at a vertex e is defined by linear inter-
polation of the values at the two vertices o (with which the vertex e shares
an edge), and that the value at a vertex A is defined by bilinear interpolation
of the values at the four vertices o (with which the vertex A shares a face).
One obtains the encoding w-lift mask depicted in Figure 6.

encoding decoding

°oa

w-lift(a,b) s b3

o p?

s-lift(a,b) + @%+ 33ab+ 3a%b?

Figure 6: 3D lifting masks.

Proceeeding analogously to the 2D case, we can derive the encoding s-lift
mask and the decosing masks shown in 6.
Face case. In the next /2-subdivision step, we have to deal with the situ-

ation shown in the third picture of Figure 2. We have to ensure that we do
not violate the assumptions made for the volume case that the values at the



vertices /A are bilinear interpolations of the values at the neighbor vertices o.
Thus, when the values at the vertices /A are available, their values should be
computed only from the values at the vertices o. This insight leaves us with
the 2D case, and we can apply the 2D masks of Section 4.

Edge case. When applying linear B-spline wavelet encoding to the situation
illustrated in the fourth picture of Figure 2, we must not violate the assump-
tion that the values at the vertices e are linear interpolations of the values
at the neighbor vertices o. When the values at the vertices e are available,
their values must be computed only from the values at the vertices o. This
fact leaves us with the one-dimensional case, and we can apply the 1D masks
of Section 3.

All masks are as narrow as they can be. The face and edge cases naturally
cover boundary faces and boundary edges of the domain.

7 Volume data

We use our techniques for scientific visualization of volume data. We compare
the results obtained by applying a +/2-subdivision multiresolution scheme
with and without applying trilinear B-spline wavelet filters for downsampling.
Since we want to show how our wavelets improve image quality at a low
resolution, all examples are provided at a coarse level of resolution.

Our first example data set is of a human brain data set.?2 It is given as
753 slices, and each slice has a resolution of 1050 x 970 points, where 24-bit
RGB-color information is stored. We generated a mesh hierarchy based on
v/2 subdivision and applied the trilinear B-spline wavelet filters to each color
channel independently.

Since the data was too large to be stored in main memory, we used out-
of-core techniques. Due to the narrow masks of our lifting scheme, at most
three slices were used simultaneously.

Figure 7(a) shows a part of a cutting plane at highest resolution, Figure
7(b) after downsampling to a resolution of 1.6% with /2 subdivision, and
Figure 7(c) after downsampling to a resolution of 1.6% with v/2 subdivision
and trilinear B-spline wavelet filters.

Compared to Figure 7(b), the contours of the brain in Figure 7(c) are

2Data set courtesy of A. Toga, Ahmanson-Lovelace Brain Mapping Center, University
of California, Los Angeles
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(a) (b) (©)

Figure 7: (a) Slice through 3D brain data set at full resolution; (b) slice at
resolution of 1.6% without and (c) with B-spline wavelet filters on a v/2-
subdivision scheme.

much smoother. Moreover, the slice in Figure 7(c) does not only contain
information of the slice in Figure 7(a) but also of the full-resolution slices
next to it. Without the averaging performed by the wavelet filter, some
detail information of the neighbored slices can get lost.

For the generation of Figure 8, we applied our techniques to numerically
simulated hydrodynamics data. The data set is the result of a 3D simulation
of the Richtmyer-Meshkov instability and turbulent mixing in a shock tube
experiment [7]. For each vertex of a 1024® structured-rectilinear grid (one
time step considered only), an entropy value between 0 and 255 is stored.
The figure shows the isosurface corresponding to the value 225 extracted
from two different levels of resolution (one time step). Again, we contrasted
the results of the ¥/2-subdivision hierarchy without (left column) and with
(right column) trilinear B-spline wavelet filters.

When using the wavelet approach, low-resolution visualizations suffice
to see where turbulent mixing takes place. For example, Figure 8(c) shows
clearly the big “bubble” rising in the middle of the data set. The bubble can
hardly be seen in Figure 8(a). The averaging steps of the wavelet filters lead
to a much better approximation.

Since the generated wavelet filters are narrow (as a result of the lifting
scheme), they do not restrict the application of the V/2-subdivision hierarchy
to an adaptive setting. For adaptive mesh refinement in a {/2-subdivision
hierarchy, we refer to [3, 5]. In Figure 9, we show a view-dependent visualiza-
tion based on an adaptively refined v/2-subdivision mesh. The data set we
used is a computerized tomography (CT) scan of a primate lung consisting
of 512 x 512 x 266 sample points.® Figure 9(a) shows the adaptively refined

3Data set courtesy of Erik R. Wisner, Department of Radiology, University of Califor-
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Figure 8: Entropy in a 3D simulation of Richtmyer-Meshkov instability, vi-
sualized by isosurface extraction from a +/2-subdivision hierarchy without
(left column) and with (right column) B-spline wavelet filters (at resolutions
of 0.003% and 0.2%).

mesh, where the viewpoint is positioned at the center of the right face of the
bounding box. Figure 9(b) shows an isosurface extracted from the adaptively
refined mesh for isovalue 86, chosen from the interval [0, 255].

8 Lifting for v/2-subdivision hierarchies

For the 4D case, we have to distinguish between four different cases referring
to the four different configurations shown in Figure 3. We start with the
situation shown in Figure 3(b). By convolution of the 1D masks in four
coordinate directions we obtain a generalization of mask (3) to a 4D mask.
We adjust it to the v/2-subdivision setting of Figure 3(b) by assuming (i)
that the value at a vertex e is defined by linear interpolation of the values
at the two vertices o (with which the vertex e shares an edge); (ii) that the
value at a vertex A is defined by bilinear interpolation of the values at the
four vertices o (with which the vertex A shares a face); and (iii) that the
value at a vertex A is defined by trilinear interpolation of the values at the
eight vertices o (with which the vertex A shares a cuboid). Consequently, one

nia, Davis
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(a) (b)

Figure 9: View-dependent visualization of lung data set using an adaptively
refined v/2-subdivision mesh and B-spline wavelet filters.

obtains the mask w-1ifte,coqe (@, b) shown in Figure 10. We proceed as for the
lower-dimensional cases and obtain the masks s-1iftencode (@, b), $-liftgecode (@, b),
where @ is the parameter a from the s-lift encoding mask, and w-lifte,coge (@, b),
see Figure 10.

encoding decoding
| ‘ - d+2abr ; ; b
. | ° | 3%+ Lap® | o ! o a4 47ab
—lift(a,b : : 2ab+3 : : a%+daabt

w-lift@b) P BT ot P e P e 6aadb% 4a%ab?

: o bt o g
s-lift(a,b) | ° ! o at ¢ o bt

P P s s

Figure 10: 4D lifting masks.
When inserting the vertices A, the vertices /A, and the vertices e as done in
the situations in Figure 3(c), (d), and (e), respectively, we must follow the
assumptions (i)-(iii) described above. The filters reduce to the 3D, 2D, and
1D filters, respectively.
9 Time-varying volume data

The time-varying volume data used for the example shown in Figure 11
represents the evolution of an Argon bubble disturbed by a shock wave.

13



The simulated data consists of 450 time steps, each one having an associated
640 %256 x 256 rectilinear grid. For each vertex, a density value between 0 and
255 is stored.* We have constructed a v/2-subdivision hierarchy combined
with quadrilinear B-spline wavelet filters. For visualizing the results, we have
used volume rendering.

(b)

Figure 11: Volume rendering of density at time step 192 of Argon bubble
simulation. Downsampled to 0.78% using combined v/2-subdivision hierarchy
in four dimensions and one dimension without (a) and with (b) linear B-spline
wavelets.

Considering Figure 11(b), we have performed a v/2-subdivision downsam-
pling combined with quadrilinear B-spline wavelet filters down to a resolution
of 6.25%, followed by 1D downsampling steps with linear B-spline wavelet
filters down to a resolution of 0.78%. The fact that our 4D wavelet lifting
scheme is decomposed into a 4D, 3D, 2D, and 1D step allows us to integrate
linear B-spline wavelet schemes of any dimension into one framework. One
can compare this result to the one obtained when downsampling without
wavelet filters, see Figure 11(a). Both pictures are the results of applying
volume rendering to time step 192. Figure 11(a) only shows data from time
step 192, whereas Figure 11(b) contains information of a short sequence of
time steps close to time step 192, including all possibly significant changes.

To quantify the improvement in approximation quality, we computed ap-
proximation errors for coarser levels of approximation by comparing them to
the highest-resolution level. Figure 12 shows the average improvement for
various levels of resolution (in a logarithmic scale) when applying quadrilin-
ear B-spline wavelet filters.

‘Data set courtesy of The Center for Computational Sciences and Engineering,
Lawrence Berkeley National Laboratory
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error reduction
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Figure 12: Average root-mean-square error reduction when applying linear
B-spline wavelet filters.

10 Conclusion

We have presented multiresolution hierarchies based on /2 subdivision and
n-variate B-spline wavelet filters. We have described the methods in a general
setting with particular focus on the 1D, 2D, 3D, and 4D case, since they can
be used for hierarchical representations of curves, surfaces, volume data, and
time-varying volume data, respectively.

The </2-subdivision scheme leads to a regular data organization. Mesh
connectivity and vertex locations are implicitly defined (no additional storage
space is necessary), and data access is simple and fast. In general, regular
schemes have the drawbacks of coarse granularity and low adaptivity. The
{/2-subdivision scheme only doubles the number of vertices in each subdivi-
sion step regardless of the dimension n.

For high-quality data approximation on each level of detail, we use down-
sampling filters based on n-variate (linear) B-spline wavelets. The filters must
be defined for the /2-subdivision connectivity without restricting adaptiv-
ity. We derived B-spline wavelet lifting schemes for {/2 subdivision leading
to small / narrow filters.

We have demonstrated the benefit of using these filters by providing 2D,
3D, and 4D examples and applying various visualization tools (including
view-dependent isosurface extraction from adaptively refined meshes) and
even out-of-core data exploration techniques.
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